(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a(x1) → g(d(x1))
b(b(b(x1))) → c(d(c(x1)))
b(b(x1)) → a(g(g(x1)))
c(d(x1)) → g(g(x1))
g(g(g(x1))) → b(b(x1))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → g(d(z0))
b(b(b(z0))) → c(d(c(z0)))
b(b(z0)) → a(g(g(z0)))
c(d(z0)) → g(g(z0))
g(g(g(z0))) → b(b(z0))
Tuples:
A(z0) → c1(G(d(z0)))
B(b(b(z0))) → c2(C(d(c(z0))), C(z0))
B(b(z0)) → c3(A(g(g(z0))), G(g(z0)), G(z0))
C(d(z0)) → c4(G(g(z0)), G(z0))
G(g(g(z0))) → c5(B(b(z0)), B(z0))
S tuples:
A(z0) → c1(G(d(z0)))
B(b(b(z0))) → c2(C(d(c(z0))), C(z0))
B(b(z0)) → c3(A(g(g(z0))), G(g(z0)), G(z0))
C(d(z0)) → c4(G(g(z0)), G(z0))
G(g(g(z0))) → c5(B(b(z0)), B(z0))
K tuples:none
Defined Rule Symbols:
a, b, c, g
Defined Pair Symbols:
A, B, C, G
Compound Symbols:
c1, c2, c3, c4, c5
(3) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
B(b(b(z0))) → c2(C(d(c(z0))), C(z0))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → g(d(z0))
b(b(b(z0))) → c(d(c(z0)))
b(b(z0)) → a(g(g(z0)))
c(d(z0)) → g(g(z0))
g(g(g(z0))) → b(b(z0))
Tuples:
A(z0) → c1(G(d(z0)))
C(d(z0)) → c4(G(g(z0)), G(z0))
G(g(g(z0))) → c5(B(b(z0)), B(z0))
B(b(z0)) → c3(A(g(g(z0))), G(g(z0)), G(z0))
S tuples:
A(z0) → c1(G(d(z0)))
B(b(z0)) → c3(A(g(g(z0))), G(g(z0)), G(z0))
C(d(z0)) → c4(G(g(z0)), G(z0))
G(g(g(z0))) → c5(B(b(z0)), B(z0))
K tuples:none
Defined Rule Symbols:
a, b, c, g
Defined Pair Symbols:
A, C, G, B
Compound Symbols:
c1, c4, c5, c3
(5) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 1 of 4 dangling nodes:
A(z0) → c1(G(d(z0)))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → g(d(z0))
b(b(b(z0))) → c(d(c(z0)))
b(b(z0)) → a(g(g(z0)))
c(d(z0)) → g(g(z0))
g(g(g(z0))) → b(b(z0))
Tuples:
C(d(z0)) → c4(G(g(z0)), G(z0))
G(g(g(z0))) → c5(B(b(z0)), B(z0))
B(b(z0)) → c3(A(g(g(z0))), G(g(z0)), G(z0))
S tuples:
B(b(z0)) → c3(A(g(g(z0))), G(g(z0)), G(z0))
C(d(z0)) → c4(G(g(z0)), G(z0))
G(g(g(z0))) → c5(B(b(z0)), B(z0))
K tuples:none
Defined Rule Symbols:
a, b, c, g
Defined Pair Symbols:
C, G, B
Compound Symbols:
c4, c5, c3
(7) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → g(d(z0))
b(b(b(z0))) → c(d(c(z0)))
b(b(z0)) → a(g(g(z0)))
c(d(z0)) → g(g(z0))
g(g(g(z0))) → b(b(z0))
Tuples:
G(g(g(z0))) → c5(B(b(z0)), B(z0))
B(b(z0)) → c3(A(g(g(z0))), G(g(z0)), G(z0))
C(d(z0)) → c1(G(g(z0)))
C(d(z0)) → c1(G(z0))
S tuples:
B(b(z0)) → c3(A(g(g(z0))), G(g(z0)), G(z0))
G(g(g(z0))) → c5(B(b(z0)), B(z0))
C(d(z0)) → c1(G(g(z0)))
C(d(z0)) → c1(G(z0))
K tuples:none
Defined Rule Symbols:
a, b, c, g
Defined Pair Symbols:
G, B, C
Compound Symbols:
c5, c3, c1
(9) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → g(d(z0))
b(b(b(z0))) → c(d(c(z0)))
b(b(z0)) → a(g(g(z0)))
c(d(z0)) → g(g(z0))
g(g(g(z0))) → b(b(z0))
Tuples:
G(g(g(z0))) → c5(B(b(z0)), B(z0))
C(d(z0)) → c1(G(g(z0)))
C(d(z0)) → c1(G(z0))
B(b(z0)) → c3(G(g(z0)), G(z0))
S tuples:
G(g(g(z0))) → c5(B(b(z0)), B(z0))
C(d(z0)) → c1(G(g(z0)))
C(d(z0)) → c1(G(z0))
B(b(z0)) → c3(G(g(z0)), G(z0))
K tuples:none
Defined Rule Symbols:
a, b, c, g
Defined Pair Symbols:
G, C, B
Compound Symbols:
c5, c1, c3
(11) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
C(d(z0)) → c1(G(g(z0)))
C(d(z0)) → c1(G(z0))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → g(d(z0))
b(b(b(z0))) → c(d(c(z0)))
b(b(z0)) → a(g(g(z0)))
c(d(z0)) → g(g(z0))
g(g(g(z0))) → b(b(z0))
Tuples:
G(g(g(z0))) → c5(B(b(z0)), B(z0))
C(d(z0)) → c1(G(g(z0)))
C(d(z0)) → c1(G(z0))
B(b(z0)) → c3(G(g(z0)), G(z0))
S tuples:
G(g(g(z0))) → c5(B(b(z0)), B(z0))
B(b(z0)) → c3(G(g(z0)), G(z0))
K tuples:
C(d(z0)) → c1(G(g(z0)))
C(d(z0)) → c1(G(z0))
Defined Rule Symbols:
a, b, c, g
Defined Pair Symbols:
G, C, B
Compound Symbols:
c5, c1, c3
(13) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
C(
d(
z0)) →
c1(
G(
z0)) by
C(d(g(g(y0)))) → c1(G(g(g(y0))))
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → g(d(z0))
b(b(b(z0))) → c(d(c(z0)))
b(b(z0)) → a(g(g(z0)))
c(d(z0)) → g(g(z0))
g(g(g(z0))) → b(b(z0))
Tuples:
G(g(g(z0))) → c5(B(b(z0)), B(z0))
C(d(z0)) → c1(G(g(z0)))
B(b(z0)) → c3(G(g(z0)), G(z0))
C(d(g(g(y0)))) → c1(G(g(g(y0))))
S tuples:
G(g(g(z0))) → c5(B(b(z0)), B(z0))
B(b(z0)) → c3(G(g(z0)), G(z0))
K tuples:
C(d(z0)) → c1(G(g(z0)))
C(d(g(g(y0)))) → c1(G(g(g(y0))))
Defined Rule Symbols:
a, b, c, g
Defined Pair Symbols:
G, C, B
Compound Symbols:
c5, c1, c3
(15) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
C(d(g(g(y0)))) → c1(G(g(g(y0))))
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → g(d(z0))
b(b(b(z0))) → c(d(c(z0)))
b(b(z0)) → a(g(g(z0)))
c(d(z0)) → g(g(z0))
g(g(g(z0))) → b(b(z0))
Tuples:
C(d(z0)) → c1(G(g(z0)))
G(g(g(z0))) → c5(B(b(z0)), B(z0))
B(b(z0)) → c3(G(g(z0)), G(z0))
S tuples:
G(g(g(z0))) → c5(B(b(z0)), B(z0))
B(b(z0)) → c3(G(g(z0)), G(z0))
K tuples:
C(d(z0)) → c1(G(g(z0)))
Defined Rule Symbols:
a, b, c, g
Defined Pair Symbols:
C, G, B
Compound Symbols:
c1, c5, c3
(17) CdtMatrixRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
G(g(g(z0))) → c5(B(b(z0)), B(z0))
B(b(z0)) → c3(G(g(z0)), G(z0))
We considered the (Usable) Rules:
g(g(g(z0))) → b(b(z0))
b(b(z0)) → a(g(g(z0)))
a(z0) → g(d(z0))
And the Tuples:
C(d(z0)) → c1(G(g(z0)))
G(g(g(z0))) → c5(B(b(z0)), B(z0))
B(b(z0)) → c3(G(g(z0)), G(z0))
The order we found is given by the following interpretation:
Matrix interpretation [MATRO]:
Non-tuple symbols:
Tuple symbols:
M( c5(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( c3(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → g(d(z0))
b(b(b(z0))) → c(d(c(z0)))
b(b(z0)) → a(g(g(z0)))
c(d(z0)) → g(g(z0))
g(g(g(z0))) → b(b(z0))
Tuples:
C(d(z0)) → c1(G(g(z0)))
G(g(g(z0))) → c5(B(b(z0)), B(z0))
B(b(z0)) → c3(G(g(z0)), G(z0))
S tuples:none
K tuples:
C(d(z0)) → c1(G(g(z0)))
G(g(g(z0))) → c5(B(b(z0)), B(z0))
B(b(z0)) → c3(G(g(z0)), G(z0))
Defined Rule Symbols:
a, b, c, g
Defined Pair Symbols:
C, G, B
Compound Symbols:
c1, c5, c3
(19) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(20) BOUNDS(O(1), O(1))